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ABSTRACT

A detailed experimental investigation of the structure of weak turbulence

[N

generated by various single~and multiple-stage grids has been made, The weak

¥

turbulent fields were limited to those having no interaction with the mean flow
B T Uield. "\{f{.’:";presenf study covers a range of Reynolds numbers of turbulence between
70 and 7. Components of turbulence were found to have equipartition of e'nergy
in the final stage of decay. When the Reynolds number of turbulence is < 30,
| M;Eé l;inefi‘ché;v-a;gy“;)f furlvaru!ence decreases inversely as the square of decay time,
All the length scales of turbulence increase as the square root of time, while the
Reynolds number of turbulence decreases as the square root of time, Both the
. TrE ~'"a..;fv—=r“rrn; AR CONTRIOTION THOIGTIONS SOOWEG SE =05 ESeT VI s (01 wets
not in &greemenf with those predicted by the normal statistics of turbulence. The
longitudinal correlation function is closer to a Cauchy's distribution than a Gaussian
distribution function. The resultant three-dimensional energy spectrum show continuous
transfer of energy from the low to high wave numbers through out the final stage of
decay. The measured time-correlation functions up fo the fourth order indicate
thot ‘fh‘e\_grid-genemfed turbulence is not completely consistent with normal statistics.
“;i:-dl experimental evidences imply that in the final stage of decay the wave components
. of turbulence are not completely independent with unlimited degrees of freedom but

are closely related to the kinetic model of a field consisting of a specific type of line

vortices which are aged and essentially non~interacting.
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1.0 INTRODUCTION

In almost forty years of research in turbulence, the classical problem of
how a weak turbulent field decays with time is still an unsettled question, The
traditional statistical treatment of turbulence is to derive from the Navier-Stokes
equations the correlation equations for fluctuating velocities at two and three points
in the flow field. The second-order correlation equations contain the third-order
involve the fourth-order correlations, and sc on. In a weak turbulent field, i.e.,
in a final period of decay, the third-order correlations are usually assumed
negligible, and then the second-order correlations become linear differential
©GUUTIONS,  111e Enelgy SPEGITUM 1ensol 01 The TUrDUIENT VEl0CITy TIUCTudfions, wnicn
are Fourier fransformations of the second~order correlations, are introduced to provide
the basis for ideas about the energy distribution among different wave numbers. Solutions
of the energy spectrum tensor for the weak turbulent field can be expressed by the
product of an exponential time-decay function with an unspecified initial spectrum
tensor, Early theoretical investigations of this subject were made by Taylor],
Millionshfchikovz, Kérmén—Howcxrfh3, Loifsionsky4, and L?n5. Upon assuming the
Loitsiansky invariant, Batchelor® found that the energy of a homogeneous and isotropic
turbulence decays as (i’-fo)_5/2 in the final period, where t is the fime, and tg is
a virtual time. The Loitsiansky invariant was used to postulate the unspecified initial
spectrum tensor. Refaining the hypothesis of homogeneity, Batchelor and Chandrasekhar’

extended the analysis for anisotropic turbulence. They again arrived at the same
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power law to the ~5/2 for the final period of energy decay. Inhomogeneous turbulence
was further analyzed by Deisslers. When the energy spectrum tensor near the origin
of wave-~number space is taken to be the same as that assumed by Batchelor for
homogeneous turbulence, all components of wave energy are found to decay os the
power law to ~5/2.

However, Philip59 and recently Saffman 19 found that the energy in the

=3/2

final period decays as (i~t, ", if the net linear momentum of the fluid is not
zero. Birkhoff!! pointed out that a decay law between -3/2 and -5/2 power in
the final period had theoretical possibility compatible with the Navier-Stokes and the
12

confinuity equations. Recently Lee and Tan'#, indicated that the initial spectrum
tensors, which ultimately led to decay laws to the -=5/2 and -2 powers in the
TING1 PEFiog OT Un INNOMOYENEOUs TUIDUIENTE , WEIE U GlUss Ol UUHTISIDIE 1SI1501>
satisfying the conservation of mass and the symmetrical condition of the spectrum
tensor,

Although the statistical theory for the weak turbulent field attracted so
much atiention, only a few experimental investigations appear in the literature,
Validity of the statistical theory for turbulence in the final period has not been
verified in dé‘failo The experimental evidence made by Batchelor and Townsend 15
to confirm the energy decay law of the -5/2 power was considered by Birkhoff' | to
be inconclusive. Further experimental study on weak decaying turbulence seems to

be necessary to clarify the analytical predictions. The experimental result of Tan

-2 .
and LingM shows that the energy of turbulence decays as ™ within a substantial
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range of final decay time. A kinetic model, based on aged and noninteracting
line vortices, was proposed to explain this observation; however, no spectrum
measurement was made at that time. Deiss!er}5 suggested that spectrum measurement
in the final period would be necessary for positive identification of the structure
of weak turbulence. Hence, under his encouragement and support, an intensive
restudy of the structure of a weak turbulent field was undertaken. An improved
testing facility was built with the specific objective of extending the decay time
as long as possible so as to obtain a more accurate indication of the decay law.

The specific turbulent field studied in this paper can be classified as one
of low Reynolds number of turbulence (<100) with physical eddies of limited range

. -~ 3 b [T} ] P LY LA .. % [ .
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mean flow field. To generate such a ﬂo.w field, several methods were considered.
1. Generation of turbulence by placing a grid in a uniform steady
flow field,
2. Generation of turbulence by a grid moving at uniform speed through
an iniﬁaf‘ly quiescent body of fluid, and
3. Generation of uniform turbulence throughout the volume of an
initially quiescent large body of fluid by dropping a grid quickly
through the body of fluid.
The third method of generating turbulence is considered to be most ideal in that the
energy grédien? of turbulence will be milnimum throughout the volume of fluid.

However, it has the same common defect associated with the second method because



it is difficult to avoid small secondary fluid motions caused by nonuniform temperatures
existing in a lorge body of stagnant fluid. Furthermore, if one employs the hot wire
or hot film techniques to obtain statistical data for the turbulent field, one would

be required to tow the sensor mechanically through the body of fluid at a high degree
of uniform speed. This was found to be very difficult to achieve, considering the

present state of the art as well as the need to maintain a reasonable cost. Most

of all, the length of each statistical record that could be obtained from these methods

is critically limited by the size of any testing facilities. The overall characteristic
of the first method was found to be the best of all three in that uniform temperature
could be maintained through the continuous recirc;‘iaﬁng and mixing processes
employed in the system, Due to the greatl inertia of a tlowing body ot tiuvid, noise,
vibration, and unsteady flow can be reduced to a desirable limit. In addition, the
sensor can remain stationary with respect to the laboratory frame, thus eliminating
an important source of noise. Above all, unlimited amounts of statistical data

could be obtained in such a system. Therefore, this method was adopted to generate
all turbulences studied in this report.

Detailed techniques for the experimental setup, measurements, data reductions,
and analytical results are described in the fg!lowing sections. ingeneral , the
turbulence in its final stage of decay was found to have a distinctive self-preserving
velocity structure, The wave components of such a field do not show any terndency

to decay independenily, even at very low Reynolds number of turbulence. The

‘measured energy transfer function indicates continuous transfer of energy from the low
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to high wave numbers throughout the final stage of decay. This was found to be the
key experimental fact which is contrary to the present theory of weak turbulence,
in which the transfer of energy other than the self diffusion of waves is taken

to be zero in the limit. A maximum energy decay rate proportional to the inverse
square of decay time was consistently observed for a weak turbulent field that

did not interact with the mean flow field. For turbulence which interacts with the
mean flow field, the decay rate is always less than the inverse-square law. All
attempts to create turbulent fields that would decay faster than the inverse-square
law as well as the predicted -5/2 power law have not been successful. It is now

doubtful whether such a field could be created or exist within the physical limits

.o
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2.0 EXPERIMENTAL SETUP AND PROCEDURE

2.1 Water Channel

A water channel instead of @ wind tunnel was selected for the preseni
study because the kinematic viscosity of water is approximately 16 times less
than that of air. Hence, for modeling a given Reynolds number, either based on
the mesh length of the turbulence generating grid or the dissipation length of the
grid generated turbulence, the mean velocity required for water is only one-sixteenth
that of air. Also there will be a corresponding increase in time scale for water as
against air, The required Reynolds numbers, based on the mesh length and the
dissipation length, are of the order of <1000 and <100, respectively, for the
present study. The 16 times reduction E'T‘ mean velocity for water would not only
keep the boundary layer of the channel laminar fo reduce the interaction with the
turbulent field, but also the corresponding increase in the time scale would enhance
the accuracy of measurements for the decay rate of turbulence. The lengthened time
scale also permits one to obtain a direct visual observation of the sturcture of
turbulence using the dye-streak technique.

A special water channel 0.6 meter in width by 0.6 meter in depth and
11.0 meters in length was constructed of double layers of 1.9-cm marine plyweod,
as shown in Fig. 1. The walls of the channel were built to within 0.16 cm of the true
straight line by carefully overlapping the joints of the plywood panels. For a

designed flow speed of less than 5 cm/sec, no measurable slope was necessary for the



bottom of the channel. The channel bottom was built to within 0,16 cm of the

true level, The inside surface of the channel was linéd with marine fiber~glass
plastic and a smooth overcoat of paint. Two plastic pipes 10.2 cm in {.D. were
used for recirculating the flow from one end of the channel to the other. At the
outlet end of the channel, a 26.7-cm diameter low=velocity propeller pump was
used for recirculating the fluid. The pump was driven by o special motor-generator
set made by Electro-Craft Corporation. By means of feedback conirol, the motor
within 0.02 percent of the set speed for all external variation of line voltages and
changes in load was achieved.

- ] (RN o O 0 DO SRy . SR Cirmia PR R B SRS Y . O
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uniform flow in the test section. Uniform flow in the channel was accomplished

by using multiple sections of honeycomb and fine mesh screens. Since head loss
through the screen was negligible, multiple layers of 12.6-mesh/cm screens were
used to damp out all physical eddies larger than 0.1 cm. Small eddies of low energy
level decayed very quickly within 10 cm from the last screen. To prevent clotting
of the fine screens, water in the channel was filtered continuously by a swimming
pool filter system to keep the water free of lint and bacterial growth. Conditions
for uniform and steady flow in the channel were found to depend critically on the
absolute uniformity of the damping screens; hence they were carefully cleaned at
the beginning of each experiment. A baffle plate was installed af the outlet end

of the channel. [t was set of such a level that the water flowing over it would reach
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the critical velocity shown in Fig. 1. Under this condition no waves downstream of
the plate could propagate upstream; most of all, the backwater effect causing
nonuniform flow in the channel was eliminated. The zone of stagnant flow field
in front of the baffle plate was found to be less than half the width of the channel
and it did not notably shorten the usable length of the test channel, Additional
wave traps were installed at the inlet end to eliminate surface waves, To reduce
external noises, the channel was set on a solid concrete floor far away from all
sources of vibrations.

The low ambient noise of the test channel had been demonsirated by the

factthat capillary dye streaks initiated of the inlet end of the channel remained

L A ot cr - 1 L S = T J N OU R P PP 1 B SO D N T 7T
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diffused laminarly to approximately 2.0 cm from the wall at the outflow end. This
indicated that the channel boundary layers were laminar throughout the channel

when no turbulence-generating grid was introduced into the channel, With the
introduction of turbulence generating grid used in this report, the dye drops introduced
at the channel boundary near the grid were found to diffuse laterally about 5 cm

from the wall 1 meter downstream from the grid, Thi; was due mainly fo the ?urbuien_ce
created by the grid. At the downstream end of the channel the lateral diffusion was
fimited to 8 cm because the boundary layer tended fo remain laminar, and the grid
turbulence decéyed. Thus, the major protion of the channel core was free from either
the disturbance generated from the channel walls or from the cutoff effect by ’rhs

walls on the grid turbulence. These features were key reasons for using a water

channel in preference to the wind tunnal for this study.
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2.2 Biplane Grids

The mesh size of the turbulence~generating grid to be used was limited by
the finite size of the water channel; The physical size of the turbulent eddies
created by the grid should be small with respect to the width of the channel in
order to avoid interaction of such eddies with the mean flow field, However,
the mesh size should rnot be too small, The g}id should be of a size that will
produce turbulence of sufficient Reynolds number and energy that could still be
detected at the outflow end of the channel. Three sizes of biplane square grids
meeting the previously described requirements were used in this study. Two grids
have the same mesh~to~rod ratio of M/d = 2.8, one with M = 3.56 ¢cm and the
other with M = 1.78 cm. The third is an open~type grid with M/d = 5.0 and
M =3.18 cm. Henceforth, these grids will be designated as Grids A, B and C,
respectively, A detailed survey of the intensity of furgulence and grid wake was
made immediately behind each of the three gr;'ds. In general, the grid wake can be
detected at a distance of x/M = 5 behind the grid. Beyond x/M =5, the wake
becomes unstable. Farther downstream the wake is undetectable, and the turbulence
becomes homogeneous in a plane normal to the mean flow. Measurements were taken
to check the planar homogeneity of the generated turbulence at x > 35M from
Grids A and B, and at x > 10M from Grid C. It was found that the measured infensities
of turbulence were constant within 2 percent in the cross-flow planes, The energy
components of turbulence were measured by varying the angle between the hot film

sensor and the mean flow direction; see Section 2.3. The ratio of the energy of
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lineavized,

10
turbulence in the flow direction, u2 , and the cross-flow direction, v2 , is
shown in Fig. 2. The equipartition of the energy components of turbulence
indicates that the turbulence in the present study has met a necessary condition

of plane isotropy (within 5 percent). This result is different from the measurements

o et

Lar T A

ri:ported the turbulence to be anisotropic

(UQ/QJZ = 1. 5) in the final period of decay after being apparently isotropic in the

initial period.

2.3 Velocity Probe
Perfect low~-frequency response and linear-output characteristics of a

velocity probe are essential for measurement of weak furbulence in water. A

nsiﬁhf—fempemfure hot~film anemometer system

o3 =

17 was used to

measure the fluctuating velocities. The basic sensor was a 30-degree, hot-film
wedge, 0.15 mm in chord and 1.0 mm in span. The probe was mounted on brass
tubing 2.5 mm in diameter by 10 cm in length. Both the velocity and the directional

response of the probe were carefully calibrated; see Fig. 3. For the condition in

) which the fluctuating signal voltage e(t) and the turbulence velocity u(t) are

i

2 K
iinearly related, i.e., e(t) = Bu(t), the output signal from the sensor, whose

plane of symmeiry (bisecting plane of wedge) is paralle! to the.u and v compenent

of the velocities, can be expressed by the following equation:

e(t) = B{u(t)cosd + v(t)sind }+ Qw(t) (2.1)
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where § is the angle between the mean velocity component U and the normal to
the long axis of the hot film; u(t) is the fluctuating velocity along U; v(t) and
w(t) are the cross velocity components normal to U; and B and Q are the
calibration constants, Both the constants B and Q and the directional sensitivity
were obtained and verified by oscillating the probe sinusoidally in a mean flow
field. The probe was oscillated mechanically in three different modes at a fixed
amplitude of 1.27 cm for different oscillating frequencies. In mode 1, the plane
of symmetry of the sensor was placed in the plane of uand v components, with
@ = 0 degree. The probe was oscillated along the direction of mean ﬂo;/v. In

mode 2, the film was set at @ = 45 degrees and was also oscillated along the

dirzotion 28 monn Flane e eedn R b conear e ok harl ta 0 = 0 dearee

and was oscillated in the direction of the w component. Typical calibration

curves for the three modes are shown in Fig. 3. The slope of the calibration curve for
mode 1 gives the constant B, while the slope of mode 3 gives the constantQ . The
curve for mode 2 verifies the cosine response characteristics, The value of Q/8

was found to be 0.09, which is negligible as far as the contribution of w2 to the
measured quantities of uZ and v2 is concernedv. When the plane of symmetry of the
probe is in the u and v plane, one notes that the relationship of e(t) and u(t)

is perfectly linear for both @ = 0 and 45 degrees throughout the range of measurement.
These ideal operating characteristics were built specifically into the anemometer

system for this work. The cosine direction sensitivity (Eq. 2.1) was found to break

down for @ > 55 degrees. Hence, Eq. 2.1 is valid for all furbulent fields studied,
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except at locations very close fo the grid where the instantaneous value of @
could exceed the previously described limit.
Let e; and ey be the root-mean-square (rms) outputs of the anemometer

set at # = Odegree and @ = 45 degrees, respectively; then

N

e2 )
- i (2.2)
2 e% - e%

prm—

N

This relationship was used to obtain the ratio of energy components shown in Fig, 2.

Here-we take oV = 0, since there was no mean velocity gradient in the field,

2.4 Recording and Reprocessing Data

Sif_gnal output from the anemometer system was normally recorded on
Frequéﬁé%-modu{afed magnetic tape recorder. A continuous recording time of 35
minutes was used for each data run. Before o data run a calibration run was recorded
by oscillating the probe at two frequencies (f - 1/7 and 1/14 cps) in the mean flow
field. The decaying turbulent fields were measured at approximately 10 locations |
along the channel, starting at a few mesh lengths from the grid and extending tfo
location where the energy of the ambient noise was approximately equal to 17 percent
of f"hé:;nergy of turbulence., The ambient noise of the channel and equipment wifhovﬁ-
the turbulence~generating grid was also recorded on the tape after each data run,
During data recording, both the mean velocity and root-mean-square of turbulence
were continuously menitored by analog means to provide assurance that the data were

valid throughout the long recording period.

-
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The recorded data can be analyzed either by an analog or by a digital
computer. Most analog dafa~processing techniques use a low-pass RC filter
to integrate the instantaneous quantities. Consequently, the resolution of the
low~frequency result is not always too satisfactory. In analyzing data of a
weak turbulence, especially in water, the low-frequency domain is extremely important
since the bulk of energy is contained within the 2-cps region. To obtain unbiased
measurements at low _ffequencies, digital computing techniques were chosen.

Before the recorded analog data could be analyzed by a digital computer
the following reprocessing of data was required:

1. Transferral of the low-speed tape to a high-speed tape to meet

- t e ¥ 1 . LR N N IS RN | e ) Sy
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2, Conversion of continuous analog data into discrete digital

samples of equispaced time interval,

3. Removal of the long period trend and mean velocity U by means

of a digital running-~average technique.

The high-—speed capability of the analog-to-digital converter required un
increase in tape speed 32 times the original recording speed (4.78 cm/sec). This
was done by speeding up the original tape recorded on an Ampex SP-300 by eight
times and by transferring the data to a tape on an Ampex SR-600 recorder at
tape speed of 19 cm/sec. The transfer tape was then digitized at a speed four times
faster than ifs recording speed.

To compute accurate autocorrelation and energy spectrum functions within
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reasonable computer time, a careful trade-off study between the resolution of the

results and the cost and capacity of the computer musi be made., According to

18

Blackman and Tukey '®, and Bendat and Piersolw, a sample interval equal to

one-fourth of the period of the highest frequency component observable in the

record is sufficient for computing accurate autocorrelation and energy spectrum

functions. From oscitloscope displays of the hot film output, the highest frequency

component in the signal was about 10 cps. Thus, a sample interval of At = 1/40

second is used to digitize the analog data. [t was found that the computed spectra

contain almost no energy at frequencies higher than 5 cps; hence, the digitized

sample interval used would not cause significant aliasing error,

The mean velocity and its long period trend may be removed trom the

original data, e'(t), by a running average, e/(i).
e(t) = e' (i) - e'(t)

where

t4T

A1) = 5 [ emdn

27

The effect of the running average on the recorded data can be seen as follows,

value of e'(t) can be represented by a Fourier transform

e'(t) = foo G'(F)exp(iQﬂﬂ)df

-co
and

G'(f) = foo e'(t) exp (=i2wft) dt

ne

14

(2.3)

(2.4)



The running average in terms of a Fourier transform can be obtained as

] t+T o
et) = -—-—-f [ G'(f) exp(i2mfn) dndt
2T Jy. .
' (2.5)
0 .
= f GY(f) %2_;;1 exp(i2nft) dt

00
It can be seen that the running average has a minimum high-frequency cutoff

effect proportional to 1/2xfT with band stops at f=n/2T, wheren=1,2, .. . It

follows that the Fourier transform of e(t) is of the form

6(f) = 6'(n [1- 2] (2.6)

and the power spectrum cutoff factor due to the running average is

[u-\T)GI-(-f)u\ r)] = [512:?;'1 ] (£.7)

For a low frequency of f= 1/8T, the power spectrum after removal of the running
average, G(P?Z, is equal fo 0.005 (":‘(ﬂz° On the other hand, if f 2 15/T, then

we have a cutoff factor of less than 1 percent. A digital 5-minute running average

of 2T = 300 seconds was used to remove both the mean velocity and the long period
trend from the original data, As can be seen from Eq. 2.7, a trend with a period longer
than 20 minutes is almost completely removed, while for a frequency greater than 0,05
cps the energy spectrum is practically not affected by the running average. The time-
series sample of 72,000 data points, representing the original analog data minus its
5-minute running average, was then uséd as an input to an IBM-7090 high~speed
computer for subsequent calculations of the correlation functions, A short sample of

turbulence and calibration wave repmduced'i’rbm the digitized data is shown in Fig. 4.
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The ordinate of the figure is in arbitrary computer unifs, representing velocity,
Superposed on the data is the sinusoidal calibration signal, through which the

absolute values of both velocity and time scale can be recovered,

16
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3.0 DECAY OF WEAK TURBULENCE IN THE FINAL PERIOD

The main objectives of this study was to find how the kinetic energy of weak
turbulences decay with time and how the turbulence-generating mechanism affect
the final decay of such turbulences. It was found that in the final stage of decay
the turbulence had equipartition of energy components and homogeneity in the cross~
flow planes; see Section 2.2 and Fig. 2. This condition simplified the measurements
that were required to describe such a field, Th.qf is, only one measurement of the
longitudinal componeni of turbulence was sufficient for representing the field at
each cross~flow section, A 35-minute recording of the furbulence was made at
each different cross-flow plane, x distance from the grid. The data represent the
turbulence af different decay times, t = x/U. The recorded data after being digitized

and having their 5-minute running average removed were used to calculate u? and
various correlation functions,

The energy of furbulence for each record is calculated as

m N h=1
where e} is the digitized §ampfe: B, the calibration constant; and N, the total number
of digitized samples.

An estimate can be made on the normalized standard error due to limited record
length, T,, of the data. Assuming that the spectra of turbulence are approximately of
white-noise type with band width, W, one finds that the normalized standard error was
given by Bendat and Piersol 1 as

5 1/2
]/

o (WTF)”V2 (3.

N
~

2 N
2 o= EF & 3. 1)
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The band width of the turbulence is a function of the mean flow velocity, U, and a
wave number, K, , representing the cutoff wave number
W - Ky U
2m
where K,, for the present study (Fig. 10) is assumed to be K LV (f——fo)] /2= 0.50,
Since the dissipation length of turbulence is A=[5v(t-t,)] /2 ; see Section 5.0,
then
[ 2mx ]]/2 (3.3)

1.12U7, )
For a mean velocity, U, the record length, T,, has to be increased with increasing
vt T}'L‘Q e "‘"""_‘“"'“_"I' ;C::. :!:f':?:‘.':’:".\; LI: :'ufi..v:v..uv —tieiay Wit u':::::;lf:n; \;cuuv Ur:ll()l'l'),

(t = to), is to be maintained. The moximum value for (2nx /1.12U) at the largest
period of decay measured is of the order of 6 seconds (Fig. 8). For the fixed record
length, T;, of 30 minutes used in this experiment, the largest possible error ¢ is
about 5.7 percent; at shorter decay periods near the grid, the error is negligible.
Thus, the record period T, = 30 minutes is considered adequate for the present
investigation.

A small correction for the ambient noise was found necessary for the weak
turbulence measured near the end of the channel. In general, the measured data
ended when the ambient noise was more than 17 percent of the energy of turbulence.
For every measured record of turbulence, the corresponding ambient noise of the same

station was also recorded by removing the turbulence~generating grid. The noise
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level was found to be nearly constant along the whole test channel. The same
was true for the correlation function and the energy spectrum of the noise. Dye
traces initiated at the upstream end of the channel were found to remain straight
to the end of the channel. This indicated that there were no vortical velocity
fields associated with the measured noise field; therefore, one may assume thot

these noises were due mainly to minute longitudinal oscillations of the channel flow

and recorder noises. One may also assume that the noise fields were uncorrelated

with the turbulence under study and could be subtracted from the measured datal4,

as

u = UZ:‘ ~ U (3.4)

am——cers

2 . . .
where u " is the measured energy uncorrected for noise, and u? is the energy of

n
ambient noise,

In practice, the energy of turbulence was obtained as part of the computation
for the autocorrelation function to be discussed in Section 4.0, The measured turbulence
energies for different single grids were plotted in Fig. 5 as functions of the decay time
t. The energy of turbulence created by the open Grid C approaches the inverse-square
decay law at the very early stage of decay, while the turbulence energies for the fwcla'
solid Grids A and B approach the same decay law at a later decay time. The data
in Fig. 5 were replotted in linear scales as shown in Fig. 6. It is clear that (Uz/:é) 172
varies linearly with t in the final period. This plot is used mainly to obtain the

virtual origin of decay time, ty , by extending the straight part of the energy curve

toward the abscissa of time.
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Further tests were conducted to see whether different initial conditions of
the turbulence-generating process would affect the final decay law, This was
done by using different combinations of multiple grids. One experiment consisted

of a large solid Grid A placed 30.5 cm upstream of a small solid Grid B. The

“energy of turbulence was plotted in Fig. 5 against the decay time, t, in reference

to the large Grid A. One notes that the energy of turbulence generated by Grid A
was significantly reduced by the small Grid B, However, the turbulence in the
final period followed the same inverse-square law. With the positions of the fwo
grids interchanged, it is seen in Fig. 5 that there is no effect of the small grid on

the large one. The decay time in this case is again in reference to the large

7~ L & A lf e 2 i [, P r tr - LI | .oon R ~ ~ ¥
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spacing between these grids was varied between 4.8 and 9.8 M. The decay time
is in reference to the downstream grid. It was found that in this case the turbulence
generated by the three grids was exactly the same as that of one single grid. A

20

similar frend was also observed by Tsuji and Hama“" in their study of the initial
period of turbulence decay behind multiple grids, However, the present experiment
indicated that for weak furbulence produced by grids, the energy of such fields does
not consist of waves that are independent and superposable but rather a field composed
of a specific type of eddies,

In the experimental tests, it was found that multiple grids having nonintegrol

multiples of M/d ratios could cause a strong Moiré effect, i.e., large nonuniform

drag effect. This results in large-scale eddies which could interact with the mean
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flow field, For this case, the energy decay rate of turbulence was found to be
less than the inverse-square law.

Attempts to create turbulence that would decay faster than the inverse-
square law were not successful, All energy decay rates were either less than or
equal to the inverse~square law. [t should be noted that in order to obtain the
observed inverse=~square law, one has fo achieve absolute uniformity in the mean
flow field. If such a condition were not attained, the decay rate would always
be less than the inverse-square. This may be the reason why such a decay rate

is not commonly observed,
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4,0 SELF-PRESERVATION OF CORRELATION FUNCTIONS AND ENERGY
SPECTRA IN THE FINAL PERIOD

A correlation function for a weak turbulence field was first obtained
by Batchelor and Townsend 'S in 1948. Since then no further work verifying
the results has been known in the literature. This may be due largely to the
fact that the technical difficulties involved in the measurement of weak turbulence
were formidable, However, due to recent advances in both anemometry and data~
processing techniques, studies of this nature are now possible,

In the present experimental setup, the turbulence under study is decaying
in the mean flow direction. The effect of this iongi‘fudina! energy gradient is
considered to have only minor effects on the basic decaying mechanism of the
turbulence in ifs final periodg’ ]2. Hence, the mean velocity field may be
considered as a carrier of turbulence. In compuﬁng the correlation functions
and energy spectra, one may approximate the turbulence as being locally homogeneous.
The digitized data for the fluctuating velocity component along the mean flow
direction were used to compute the autocorrelation functions. From this the
longitudinal correlation coefficients can be obtained by using the Taylor's czpproximaﬁonl .
The one-dimensional energy specira were computed directly from the Fourier
transformation of the autocorrelation functions. Based on the assumption of local
homogeneity and isotrophy, one may further compute the three-dimensional energy

and dissipation spectra from the one-dimensional spectra,
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The recorded data for the turbulence generated by a single Grid C and
Grid B were used for detailed digital analysis. The analyzed data were further
limited to the finc‘xl' period of decay, since the turbulence within this period
was found to be plane homogeneous.

The autocorrelation function of u(t) is defined as

T

R(%) = lim = o(t) u(t+ ) dr
Jim 5 fo (4.1)

which may be written in a discrete form for numerical computation

2 N~-m
R = _.E.,.,._ Z e e
m N he] h “h+m (4.2)

where e}, is the discrete digitized sample after the 5-minute running average is
removed from the original data; T =mAt is the correlation lag with sample interval
At; N, the samplesize; Q, the total discrete lag number; and B, the calibration
constant. Note that R(0) =R__q =:§. The nondimensional time correlation is

defined as

R(t) _ Rm
R(O) ~ R

Rf(T) =

m=0

In actual computation one has to choose a total lag, Q, which is more fhonllorge
enough to cover the complete range of correlation function. After the first trial
computation the required Q or maximum 7 con be determined, so that for subsequent
calculation Q can be reduced to a mim’mum in order to save computer time. The‘
total correlation lag used in computing autotorrelations were Q = 200 or T = 5 seconds

for Grid C, and Q@ = 400 or v = 10 seconds for Grid B.
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An estimate for the normalized standard errors of the computed correlation

19

function and energy spectrum'? could be made if one assumes that the spectra

of turbulence are approximately of white-noise type with band width, W, i.e.,

Var [R(1)1 /2 S12 o R2(0) 412 )
€R ——”-R-(_’l"-ju—. = (2WT.) [T+ RZ(T)} { .3)

The approximate band width of turbulence for this case is (1.12 U/2ux); see Section 3.0,
where U is the mean flow velocity,and X is the dissipc:tic;n length. At the longest

period of decay for the present experiments, the value for 1/W is about 6 seconds;

_ hence, for a record length, T, , of 30 minutes, the largest standard error, ep, of the

correlation function is

1SS

ep = 0.04[1+ KW 477
R R2()

One notes that at large T where R(0)/R(7) is not small the present measurements are not
expected to be accurate, However, at small 7, the expected error is more acceptable .
It should be noted that a tradeoff to make the present experiment more accurate must
be made against computer time and capacity. In spite of the predicted large €pr the
computed data show better consistency. The resulis of the normalized time-correlation
functions, Ri(7), at different stages of decay are shown in Figs., 7 ond 8 for Grids C
and B, respectively.

- From the described results, one may re~examine more closely the condition
of l"nomogeneify‘?1 within the decaying field., For example, the gradients of length

scales and energy in the mean flow direction must be small
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— 4.4)
X X . 2L &< 1 (
dx A dx 2)
2R, U
and
Ly duZ 3 112
S S ._3_9_(.‘.’._2)/ & 1 (4.5)
v2 dx R, U

where R, is the Reynolds number of jurbulence; x , the Taylor's dissipation length

____parameter; and L, the longitudinal integral length. These parameters are calculated

and discussed in detail in Section 5,0, From the measured data we found that

0.01 < 9% < 0.005

dx

and

——

0.04 < - S‘-?- < 0.1
dx

ﬂfx'"

Hence the fields may be considered to be locally homogeneous, and the Taylor's
cnpproximcﬂ“ion1 is applicable for the present experimental setup. It follows that

the longitudinal correlation coefficient can be approximated by

f(r)y = S&EDUE) _ pye (4.6)
(r) == HU)
u“(x)
where r=U~r. The longitudinal correlation distant, v, is further normalized by the

diffusion length parameter as

r* = r[v(’r-i'o)}“]/z (4.7)
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In the final period of decay the longitudinal correlation coefficients for both

GCrid B and Grid C are found to have self~preserving form, as shown in Fig. 9. One
should note that this function is close to a Cauchy's distribution function, and is
definitely not of Gaussian type. It was found that in order to obtain the correct
dissipation and three-dimensional energy spectra from the correlation function one
must first obtain a precise one~-dimensional spectrum through the Fourier transformation
of the longitudinal correlation coefficient . Since the spectra must cover an energy
range of at least 6 decades, see Fig. 10, it would be impractical to obtain such
spectra through direct measurements, The best solution at this stage is to attempt

to fit an analytical function over the measured self-preserving longitudinal=correlation

- N - . . - . » . al - ~ .. I | ~ 1 .
OARTITICIANRT NS SNOTWD I I . 7 A CLTIGTTY 3 UEDI U L0 1Tl twil Wi Fie awr i vy

form was found to fit the correlation coefficient within experimental errors:

1

f(r*) = @ —_—- (4.8)
‘ 1 + (-rjc-)2
(¢4

where ¢ is the half width of the distribution function. The function with a =3.2
gives a perfect fit with the experimental data for r* < 10, see Fig. 9, For r* > 10
the fit is not as good. Since the values ot large r* will effect only the low Frequency>
spec’rfc, they will have a small effect on the dissipation and the three-dimensional
spectra; and hence inaccuracy in this zone can be tolerated.,

As discussed in the following section 5.0, the important nondimensional radius
of curvature, X*, for the longitudinal cérrelaﬁon function at r* = 0 is directly related

to the energy decay rate of the system, The radius X* can be found directly from

Eq. 4.8 as:
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woe =012 L ra?m V2 (4.9)

According to the Kérmén—Howort‘h equation 5.7 for a turbulent field whose energy
decays as (i’---fo)"2 the value for a* should be equal to V5 or 2,24, Thus the

propsr value for a in Eq. 4.9 should be equal to 3.16 instead of 3.2 according fo the
best fitted curve. This coefficient will be shown later to have a strong influence on

the dissipation rate of turbulence. It was also found that the nondimensional correlation
~ functions have only a small change in functional form between the intermediate and

the final stages of decay,

From the analytical expression of the longitudinal correlation function one

et i e el 2IITRTI o naskrie saranon TRRIC FOIIEE GHS IO 1S 1GE L1,
2v2 %
U .
Ej(K) = — f f(r)cosKr dr (4.10)
k)
0

Here the power spectrum is defined in the positive wave number space so that

0

e M) e [ K, dK (4.10)
. ‘

where A is a function of the geometry and the Reynolds number of the grid. Equations

4,10 and 4.11 can be nondimensionalized as follows:

" E1(K,1) (1-—*ro)3/2 2 ” * LR ‘
E] = YL = = f F{r*) cosKr* dr (4.12)
v 0

where K* =K [v (i~ 1‘0)]]/2
Substituting Eq. 4.8 into Eq. 4.12, one obtains the nondimensional one-dimensional

specirum
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. -aK
T e f ooy CO5 KTr¥ dr® = @ (4.13)
1+ (...._)2 _

This spectrum jalso known as the Laplace's distribution function, is plotted in Fig, 10
for o equal to 3.16, It will be shown later that the decay rate of turbulence is
dictated primarily by the small variation at the vanishing end of the energy spectra;

and hence, the most important parameter governing this rate is the Taylor's dissipation

-length » . Henceforth we shall take a =3.16 as being the asymptotic value,

The nondimensional three~dimensional energy spectrum E* can be obtained
from the following i*rcmsformcli'ion22 of the one~dimensional spectrum, if the turbulent

field is homogenecus and isofrapic
g ’

v E(r-t0)Y? k¥4 1 dE}

EY 2 e o

[ * " ok ;
= = e [ K
A /2 3 akt L g ¢ 3 ek g (4.14)

where E is the three-dimensicnal energy spectrum, It has been shown previously that

the present weak turbulence is approximately homogeneous and isotropic, except the
third-order correlation functions (see Section 6.0, Fig. 14) do not fully satisfy the
condition of local isotropy. Nevertheless, it is assumed that Eq. 4.14 is valid with
reservation. The self-preserving three~dimensional energy spectrum for the weak
turbulence is shown in Fig. 11. One notes that it peaks at obout K* = 0,5 and vanishes to
a value of less than 0,01 at K* =3, while the one-dimensional spectrum vanishes at

about K* = 1,8, see Fig. 10. It is clear that in order to obtain the correct three-
dimensional spectrum extreme accuracy is required in the one~dimensional specirum.

Note also that E* is proportional to K* as K* —« 0.
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From the three~dimensional energy spectrum one can obtain the dissipation
spectrum D= 2vKZE, which can be expressed in the nondimensional form as
5/2
p* o Dlt-to) - -2 KRR (4.15)
A v 1/2
This function is shown in Fig. 12 for the case in which a =3.16. The dissipation
spectrum peaks at K* = 1,2 and vanishes at K* = 4,0,
With these results one may proceed to examine the balance and transfer of
energy among all of the wave number components. The time rate of change of
energyz2 for a given wave can be expressed as
3-5 = I(K,5) - 2vK%E (4.16)
and the integrated rate of change of energy over all waves is
® 3 o0 % 2 d:f -3
f ik = [ I dK = [ 20K°EdK = g = <2 A1) (4.17)
o 9t 0 0 t
where I(K,1) is related to the triple correlation function representing the transfer of
energy among the various waves, One notes that for the present case
[%0]
f I(K,t)dK = 0 (4.18)
0

since no energy is generated or lost while the energy of waves are redistributed. Both

Egs. 4.16 and 4.17 can be nondimensionalized as

(=) = y*+ p* (4.19)
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Since *

9E % 3 k* 4e*
(3r) = -7F + 5 gg»

hence

x 2
= _%'S_[zaK*%(z-u _.%..._)K*Z - oKt 17E" (4.21)

The energy transfer function is plotted in Fig. 12 for the case a=3.16. It is evident
that the energy transfer function has a self-preserving and nonvanishing form, with
coniinuous transfer of energy from low to high K*. In other words,. the waves are
correlated throughout the tinal stage of decay, and they must be reiafted to some
specific types of physical vortices,

The integral of the dissipation spectra can be evaluated as

o0 o0 *
[ prak* - f"'g"'“z[K*s“L ak*41 & gt - 20 (4.22)
. .3 ")

p——

The integral must equal -2, see Eq. 4.20, for the case in which u? = A(T-fo)-z .
Hence, a must equal to v10'=3,16 as is required by the Kérman-Howarth equation 52

mentioned before,
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5.0 LENGTH PARAMETERS AND REYNOLDS NUMBER OF TURBULENCE

I is of general interest to find out how the various length parameters such
as the Taylor's dissipation length parameter, X , and the longitudinal integral
length, Ly, and the Reynolds number of turbulence R, , vary with the decay
time,

The turbulence Reynolds number is defined as

9.\1/2
R, iﬁ’%—/—i__ (5.1)
where (:i) /2 is the characteristic velocity; x , the dissipation length parameter
ie tnlan ne the characterisiic lenath of turbulence . and v is the kinematic viscositv.
The dissipation length parameter, ) , is defined by the Karmén~Howarih
equaﬁon3 at correlation distance equal to zero as
.3_:.. . - _19.1;.2._?._ (5.2)
If the decay of the kinetic energy of turbulence follows a simple power law of the
form :é 0 (t—fo)*z, the dissipation length parameter may'be written as
. = [5v-1)1/2 (5.3)

since t, << t in the final period, this approximation is a valid one to use. The
parameter A may also be evaluated, as mentioned before, from the radius of the

longitudinal correlation coefficient f(r) near the origin, i.e.,
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"'f“‘(l'=0) = ]/ )‘2 (5.4)

The numerical evaluation of A from f"(0) was made by the least-square fitting of power
series of r through f(r) near the origin and solving for the radius of curvature at
r=0. It was found that A evaluated by this method was quite close to the Karman-

Howarth approximation of A in the final period of decay. Before the final period,

" can only be obtained from the radius of curvature of f(r) atr =0,

The longitudinal integral length, L., may be computed from the following

definition:
S A (=.5)
- J O A= vy
It was found numerically that L = 2x .
The Reynolds number of turbulence in the final period may be estimated by
T2\1/2 2 172
2 ()YA [5(’r-to)uz /
AT v - v
while R, before the final period is computed directly from
1 02 12

£1{0)

The measured Ry and X are presented in Fig. 13, If is inferesting fo note that for the
case of open Grid C, the Reynolds numbers of turbulence are under 30, and the decay

of energy follows the inverse-square law at a very early stage. However, for the two solid
Crids, A and B, the initial Reynolds numbers of turbulence are more than 50. As R,

decreased to approximately 30, the decay of energy was found to approach the inverse-
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square law, and followed the law throughout the last period. In the present experimental

setup, the onset of the inverse-square law is approximately R, < 30,
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6.0 THIRD AND FOURTH-ORDER CORRELATION FUNCTIONS

The correlation functions of the third and the fourth orders are the additional
statistical characteristics of the turbulent field which are of direct interest to the
statistical theory of turbulence.

The time-correlation coefficients?3 of higher order are defined as

RT’” ( T) - um(f) Un('f +'T) (6. 1)

—_ - o2 )2

If the joint-probability density distribution of velocities is assumed to be Gaussian,
then the correlation coefficients of higher order that are even are given by a function
of the second-order correlation coefficients 23 Ri(T)r and the correlation coefficients
of odd order are all zero. This may be subjected to experimental verification.

The measured correlation coefficients of the third and fourth orders at various
stages of decay were compared with results of Frenk.iei and Klebanoff2 in Fig. 14.
The data used for computing the correlation coefficients of the third and fourth orders
are based on those of the small open Grid C with measurements taken at positions
x/M=4,8and 19,2. Asshown in Fig. 14, the measured correlation coefficients
of the third order are very similar to ’rhosé of Frenkiel and Klebanoff . In the case
of isotropic turbulence, Rg' ]('r) should be equal to -Ri.]’z("r), and third order moment
coefficient, :E(f)/ [—u—i(f)]g/z, should be equal to zero. The present results for weak
turbulence and the results of Frenkiel cn'd Klebanoff at higher Reynolds numbers

“emphasize that turbulence produced by grids is not exactly isotropic, since
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RZ: () £ - rl2(7)
and

R210) = RIF2(0) £ 0

The fact that the third-order moment coefficient is not zero also implies that the
waves are not completely independent.

If the time skewnes.s23 is written as

s3() = 3R M(x) - R0 (6.2)

it is noted that the moximum time skewness at two different stages of decay (Fig. 14)

- - . -~
ES (IOMMOXIIIUIC IV WUl & A .

if the Gaussian probability density distribution of turbulence velocities is
“assumed, the fourth-order correlations can be represented by the second-order

23

correlation®”, i.e.,

1,3 _ p3,1 _
R] R3T - B, (6.3)

and
RZ:Z - 14 2(R,) (6.4)

The experimentally measured fourth-order correlations are compared with the
1,3
corresponding Gaussian values calculated by using Egs. 6,3 and 6.4 for R, ",
3,1 2 2 . . .
Ry ", and Ry“7# from the measured second~order correlation coefficients, Ry, in

Fig. 7. As shown in Fig. 15, the measured fourth-order correlation coefficients

depart from the predicted curves at regions of small lag,
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7.0 COMPARISON WITH STATISTICAL THEORY OF TURBULENCE

On the basis of the theoretical result of Diessler (Fig. 3 of Ref, 8) and
also of Lee and Tcn}z, the effects of longitudinal inhomogeneity of the present
grid-produced weak turbulence on the spectrum tensor are negligible. Thus,

6,11,13,24 for the weak homogeneous turbulence can be

the statistical theory
used to compare against the measured duta. Before making such comparisons, a

brief review of the statistical theory of turbulence is desirable. The Navier~

Stokes equations for the weak homogeneous turbulence field are in the form of

0u; du; 1 2
1 b -t op 2 (7.1)
ot + Uj Bxi poOx; AR

where u; and p are the fluctuating velocity components and pressure, respectively,
and the constants p and v are mass density and kinematic viscosity of the fluid,
respectively. If we multiply Eq.7.1by uj and add to the product a similar equation

with i and j interchanged, the resultant two-point correlation equation is

0 2 -
éTR;j(l‘,'f) = Sij(fr’f) LVAAY R;j(l‘,’f) (7,2)
where
Rij(r,f) = ux,t) uj(x+r,f)
and
5 —— 08 e
Sij(r, t) = Oy {—é;l—( uilx, 1) uj(x-}-r,?) Ul (¢, 1) 4 —f-,—nné-;i-p(x,’.r) Uj(x+r,,’r) }

Here the operator 02 acting on a second~order fensor Cij(r) is
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02 {Cij} = Cij(r)+ Cji(—r)

One may take Fourier transformation of Eq. 7.2 by defining

CI)ij (K,t) = fff R'J(r t) elK r ar
and ® KT >
Z'ij(K,’r) = [ff Sij(r,f) e dr

Then one obtains the spectrum tensor equation from Eq. 7.2

‘_ ___/cb-(K,f)‘ = LlK,r) - ZV»Kz@ij(K,f) (7.3)

It is clear that the two=-point correlation and spectrum tensor equations are
indeterminaie since the terms S;j(r,,i‘) and ‘Zii(K,f) are completely unspecified,
Equations for S;j(r,f) can be obtained; however, these involve the fourth-crder
correlations, and so on.

In the Fi—na! period of decay, S;j(r,f) and Zij(K,f) are assumed negligible;

then we have

) ,
—a-,r-Rij(r,f) = ZVV Rs (r i) (7.4)
and
24 ) = -2 72 & (K, 1) (7.5)
ot - N

Equation 7.5 possesses a solution of the form

-2 vK2(i-1,)

q)ij(Kri‘) = @;j(Klio) e <7°6)
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The equations of motion do not supply the initial spectrum tensor, <I>;j(K,’fo) ’

although they must obey confinuity and the condition of symmetry, i.e.,

Ki@;j(K,fo) = qu)ij(K,’ro) = 0 (7.7)
and
qs;j(K,f;,) = (Koo (7.8)

As (t-tg) =0 , the exponential factor will be small except for small values of K,

then one can replace @ij(K,fo) ‘by the Taylorsexpansion of @;j(K,fo) about K = 0,
This expansion satisfies Eqs.7.7and 7.8 and is defined as a class of admissible initial
enartrn  Whan the tisholence ic isatranic. the farenning rasults can be areatly
simplified. The isotropic three-dimensional energy spectrum, E(K,t) = 2w KZQ’J“(K,T)

is given by

%FE“(:*) = - 2vKZE(K, 1) (7.9)

and

—Zsz(f-fo)

E(K,t) = E(Kt.)e (7.10)

Equations7.5and 7.9 indicate that the energy components coming from different wave
numbers are statistically independent. By the Taylor's expansion of initial spectrum,
E(k,t5), about K =0, one can find a class of admissible solutions for E(K,t) that is
consistent with the thvier.—Si'oke equation (Eq. 7».1), continuity (Eq. 7.7), and the

condition of symmetry for the spectrum tensor (Eq. 7.8). The admissible solutions of
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the specfrum] 112 oo the homogeneous and isotropic weak turbulence are in the

form of
2
~2vKo(t~1

Es(K,t) = JK'e (1) (7.11)
fors=2,3,4 ..., where J is a constant. This leads to a total decay of energy in
the final period of the following form:

Jo— 0

2 o [ Bk = g TRV (7.12)

0 .(ny)(s+l)/2

It is apparent that considerable variety in the uliimate decay of turbulence can be

obtained by choosing different admissible initial spectra.

. .- - ~ ~ o1 L ] N DU TR S T ;
IS DT COCHE VY 1V sws 1w Svsmesrwonmec cooono0 o L " i alas st iaalitalal iR oV

obtained by rewriting Eq. 7.11, i.e.,

2
- J - -
E, V?/Z(f—fo)s/z = y(ss+'Tj72 [VK2(f-fo)]s/2e 2vKC(t-15) (7.13)

The dimensionless plots of Eg J]/Z(’r- to )5/2 versus  K*  for all the admissible

. - -1 o
solutions possess a self~preserving "bell shape" with Ey v VZ(’r-fo), E3 v /z(f-fo 3/2
and E4 7)-]/2(1'—{'0 )2 peaking ot K* equc:lrfo 1.00, 0.866, and 0.707(

respectively,

The longitudinal correlation functions corresponding to the admissible solutions

given by Birkoff” are

r —r2/2 X
f4(-):) = e (7.14)
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4 ZVK (t-15), ond u2<:<>(f—’ro)m5/2 )

corresponding to  E4(K,t) = J K" e ;
2
432+ 52 5 /“ -(2/5)K 5%
fg(_’i_) - r f sin Kr dK - va (7.15)
3 -2vk3(t-t) 2 -2
corresponding fo  E5(K,t) = JaK e °%, and u e (i-t,) ;
e 2.3 -5:2/6 32
1 r _ 3 I v A
and f2 (T) = 53/2 3 { VT2 erf(/5/3 = ) 5/3— e }

(7.16)

28~2VK2(?~%O)’

corresponding to E, = J,K dnd o2 oo (t=t )“3/2
2= -2 o

Here we have normalized r by the dissipation length & = [20v(t-1,)/(s +1)1 172
which is the curvature of the longitudinal correlation function, fy(r), near the origin
ofr=0,.

As shown in Fig. 5, the kinetic energy of turbulence decays as the inverse-
square of time for all cases tested. Although the inverse-square decay law is one of
the admissible solutions of the normal statistic of weak turbulence, the measured
longitudinai correlation coefficients and the energy spectrum should also be in
agreement with those corresponding to the inverse-square decay law predicted by the existing
theory. For large correlation distance, the longitudinal correlation coefficient, f4,

corresponding to the inverse-square decay law, should be slightly lorger than the curve,



F4, corresponding to the -5/2 power law, and slightly less than fo corresponding
to the -3/2 power law. As shown in Fig. 9, the present measured longitudinal

correlation coefficient, f(r), is not only larger than f3 but also larger than fy as

predicted by the existing theory. Also the three~dimensional energy spectrum

s.predicted. Consequently, the energy
transxge;}'fu;‘dﬂ;r{iéFa'é'%‘ 'z*e’ro> c;{ the final stage of decay but plays an important role
in the mechanics of decay,

In general, the experimental results are not in full agreement with the
results of existing theories for weak turbulence. The statistical theory of turbulence

(11

according to Birkhoff'! is characterized by

e Dm0 Apacse s linearly an the valoacity fisld beina normally

2. Components coming from different wave number vectors being
statistically indégendent (Eqs. 7.5 and 7.9).
Under normal statistics all odd-order correlations should vanish and the fourth-order
moment coefficient should be equal to 3. It was found that the measured third and

fourth-order correlation funcfions were not consistent with Statement 1. As shown
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in Fig. 14 and 15, the third-order moment coefficient, u3(’r)/[u2(f)] 32 , is between’

0.06 and 0.1, and the fourth-order moment coefficient, U4(f)/[u2(f)]2 , is not quite

equal to 3. The assumption of a Gaussian joint-probability distribution of velocities

and consequently the second-order correlation function (Fig. 9) are not in agreement
with those assumed by the existing theories, ‘Statement 2 is not consistent with the

present measurements,

is also not quite valid. Furthermore, since the measured energy transfer function (Fig.
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8.0 COMPARISON WITH KINETIC MODEL

Visual observation of the perturbation of capillary dye traces in all
grid-produced weak turbulence showed a distinctive turbulent field structure
consisting of noninteracting, randomly orientated, aged vortices identical to
those reported by Tan and LingMc No detectable change in the basic structure
of turbulence was observed even down to the very last stage of decay, which was
no longer measurable by the instruments. For all cases tested, the energy of
turbulence decayed precisely as (1'-1‘0)“2 in the final period (Fig. 5), which was
consistent with the kinetic model. Thus, it Is interesting to discuss the kinetic
model in relationship to the present experimental data,

The turbulence field in the final period of decay may be considered as a
field consisting of essentially noninferacting, aged line vortices with limited
distribution in energy and size. In the absence of a mean shear field, the
probability distribution of the vortices in space should be uniform and the orientation
of the vortices should be completely random. The main feature of such a field is dom~
inated by the physical line eddies, whose energy decay rate is indepe.hdent of size.
The velocity field of a line vortex of finite energy is best described by the Rouse ~Hsu2”

model, i.e.,

2 2

r ¥

V = H [é" ca+dvi . o G+Zv’r] (8.1

It is important to note that the velocity field is a solution of the Navier=Stokes equation,

where r in Eq. 8.1 is the distance from the vortex center. The constants H, o, ond o



are related fo the initial field characteristics?S for Yo , and & as

{loa/(o - 1)1l o}7?

-
1]

I = H(o-])oa/(]~g)
¢, = H(o-1)/moa

where r s the initial radius of maximum circulation To; $o ¢ the initial
centerline vorticity; a = 4vty; tg, the initial decay time (chead of t = 0);

o= 1+ tg/fd; and tg is the time of vortex generation.

The kinetic energy per unit length of vortex is

® 2
K.E. = upf Vi dr
0

) 8.2
, “2 4 1/2 %32
To8m v (ea44dut)a+ 4ut)
In the final period of decay, ty + 1 >> tg; thus, the asymptotic expansion of the
energy decay becomes
pH2 2 2 8.3
KB = @ (1 e 1)~ Al ty) (8.3)

Tan and Ling]4 have shown that the statistical average 65 the turbulence kinetic
energy in plane I (1) decays with (t + ’rd)_z, accord ing fo the same decay law as
“an individual eddy, provided the latter does not depend on the eddy scale. It is clear
that this decay law is not affected by the inherent initial conditions.
The typical length scales of the single vortex are the core sizes of the maximum
velocity and the maximum circulation crf. any time in the final period. Let & and n be

the radii of the maximum velocity and the maximum circulation of the vortex, respectively.
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Thenat r=& , 38V/9r=0,andatr=n , 9rV/0r = 0, Thus

252(0 -1Na
(oot 4vi)a+dvt) +282 (a+4vt)

a(o=-1) §‘2
(ca+ 4vt){a+4vt)

= In {1+t

}

and

d(c—])nz _ (o-1a
(oat+ 4vt)(at+4vt) ~ In {1+ at 4ut ;

Again assume that tq+t >> t_in the final period, then the asymptotic expansion -

g

of § and n are

V2 Lu(t-14)] /2, 0.63 2 (8.4)

2¢]
[H

1
20y (t-1,) 1 /2 0.895 (8.5)

i
1

It is important to note that the Taylor's dissipation length is of the order of & . If
the weak turbulent eddies generated by a grid are considered as noninteracting,
randomly orientated, aged vortex elements, the typical length scale of the weak
turbulent eddies is always propertional to the length scale of the single vortex. The
length scales of a single vortex in the final period is § ~n ~ [v(t-t, )]}/2, where t4

is taken to be of the order of ty. If the spectral function in the final period possesses

a self-preserving form, it may be written as

/2}

El(K,i‘) = F{v,(f—-i-o)}'ﬁff{K[z/(t-’ro)]} (8.6)
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where Ej is the longitudinal one~-dimensional energy spectrum ond z//{K*} is «
similarity function. The total energy is
[20] OOF . ) * N
f E](K,f)dK = {U,(i to)} w{K }dK
0 0 [u(t-1,)11/2
= W = A(f—'ro)“2

Thus

2 -3/2
Fit) = A=)V 2 Y2 gy
[y wiK3aK*

where K* = K[v(t-t,) ] ]/2, and C is a constant. The measured self-preserving

form of the one-dimensional energy spectra shown in Fig. 10, confirms the
nArmalisinns Tpetian TAr ThA gpprrrni SBperoy .

The correlation and spectral functions based on the kinetic model have not
yet been developed. However, since the measured spectral and correlation functions
are different from those based on the normal statistics, it would imply that the
statistical structure of a weak turbulence field has a limited degrees of freedoﬁ. That
is, the field has some preferred structures in the form of aged physical line-eddies.
In‘generai, the correlation function is directly related to the eddy structure, i.e.,
the velocity fields at two points within an eddy are correlated, while those without
an eddy are uncorrelated. Since the physical eddies are not spherical in structure,
they would contribute to a correlation function having broader shape, and a three-
dimensional spectral-function peaking o-f lower wave numbers, similar fo those observed
experimentally. In addition, the wave componernis from such a field are expected to

be correlated in part as indicated by the experimental resulfs,



9.0 CONCLUSIONS

By comparing the experimental results with the existing statistical theories
and the kinetic model of a weak turbulent field, one may draw the following
conclusionss

1. The kinetic energy of weak turbulence generated by single-biplane
and multiple-stage grids was found to decay in the final period
Aprrecy:Aiselyro;s the inverse-square of the decay time. The energy of
the weak turbulence produced by multiple stages of grids does not
follow the simple superposition principle. This implies that the

) P . . P U S VAR D SO AP i
WOURK 101 MUIWI NG 19 11wl Sl pwowm wr irtma e e e mr oo 207 I'f“!,"!

that has a definite preferred structure which controls the mechanics
of decay.
2. Although the inverse-square decay law is one of the admissible solutions
of the statistical theory of weak turbulence, both the measured second-
order correlation and the energy transfer functions are not consistent
with those assumed under normal statistics, This inconsistency implies
also that the wave components coming from a field of definite structure
are not completely random with unlimited degrees of freedom. Experimental
results indicated continuous transfer of energy from low to high wave

numbers throughout the final stage of decay.
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The measured third-order moment coefficient, E(f)/[?(f)] 32 , is
approximately equal to 0.1; \fhe measured fourth~order moment
coefficient, :Z‘(f)/[;i(f)} 2 , is not quite equal to 3; and the assump-
tion of a Guassian joint~probability distribution of velocities is also
not quite valid with regard to the third and fourth-order correlations
especially at small lags. These results are contradictory to the assump-
tion that quantities linearly related to the yelocify field are normally
distributed.

When the Reynolds number of turbulence was less than 30, the energy
of turbulence was found to decay as the inverse-square of time. In

this final pariod of decav. oll turbulance lenath senlas were fannd o
increase as the square root of decay time, while the Reynolds number
of turbulence was found to decrease with the inverse-square root of
time. The measured longitudinal correlation coefficients are close to
fhe-Ccuchy's distributions, and they possess a self-preservative form with res-
pect to r[v(i"-fo)—:]l/-z Both the measured Taylor's dissipation length and
the integral of dissipation spectrum correspond well with the observed
decay rate of turbulence.

Through visual observation of the perturbations of capillary dye streaks,
the turbulent field in the final period of decay was found to be also
characterized by aged and essentially noninteracting line vortices. No
further change in the basic structure of turbulence was observed down
to the last perceptible perzl‘urbcﬁon of the dye sireaks, Thus, all
experimental evidence indicated that o weak homogeneous turbulence

has a definite preferred structure.
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